张江江博士、教授

本科和博士皆毕业于浙江大学,主要从事水文系统数值建模、深度学习和数据同化等方面的研究。在Water Resources Research(WRR),Journal of Hydrology(JoH)等水文水资源领域主流期刊发表多篇论文,其中在本领域顶级期刊WRR发表第一作者论文8篇,主持或参与中国博士后科学基金、国家自然科学基金等多个项目。担任WRR、JoH等期刊审稿人。

教育经历

  • 2011.08 – 2017.06:浙江大学,土壤学,博士
  • 2007.09 – 2011.06:浙江大学,资源环境科学,学士

工作经历

  • 2020.08 – 至今:河海大学长江保护与绿色发展研究院,教授
  • 2017.07 – 2020.07:浙江大学,博士后
  • 2016.05 – 2016.12:美国普渡大学数学系,访问学者
  • 2015.11 – 2016.05:美国西北太平洋国家实验室,访问学者

研究方向

  • 水文系统数值建模
  • 深度学习
  • 数据同化

代表性论著

  • Zhang, J., Zeng, L., Chen, C., Chen, D., & Wu, L. (2015). Efficient Bayesian experimental design for contaminant source identification. Water Resources Research, 51(1), 576–598. https://doi.org/10.1002/2014WR015740
  • Zhang, J., Li, W., Zeng, L., & Wu, L. (2016). An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems. Water Resources Research, 52(8), 5971–5984. https://doi.org/10.1002/2016WR018598
  • Zhang, J., Man, J., Lin, G., Wu, L., & Zeng, L. (2018). Inverse Modeling of Hydrologic Systems with Adaptive Multifidelity Markov Chain Monte Carlo Simulations. Water Resources Research, 54(7), 4867–4886. https://doi.org/10.1029/2018WR022658
  • Zhang, J., Vrugt, J. A., Shi, X., Lin, G., Wu, L., & Zeng, L. (2020). Improving simulation efficiency of MCMC for inverse modeling of hydrologic systems with a kalman‐inspired proposal distribution. Water Resources Research, 56(3). https://doi.org/10.1029/2019WR025474
  • Zhang J, Zheng Q, Wu L, Zeng L.(2020). Using Deep Learning to Improve Ensemble Smoother: Applications to Subsurface Characterization. Water Resources Research. 56(12), e2020WR027399. https://doi.org/10.1029/2020WR027399
Dr. Zhang

特写图片

Dr. Zhang

All rights reserved. Redistribution prohibited.

联系方式

订阅我们的新闻邮件